题目内容

如图,将一张长方形纸片沿EF折叠后,点D、C分别落在点D′、C′的位置,ED′的延长线与BC相交于点G,若∠EFG=50°,则∠1=
 
考点:平行线的性质,翻折变换(折叠问题)
专题:
分析:先根据平行线的性质得∠DEF=∠EFG=50°,∠1=∠GED,再根据折叠的性质得∠DEF=∠GEF=50°,则∠GED=100°,所以∠1=100°
解答:解:∵DE∥GC,
∴∠DEF=∠EFG=50°,∠1=∠GED,
∵长方形纸片沿EF折叠后,点D、C分别落在点D′、C′的位置,
∴∠DEF=∠GEF=50°,
即∠GED=100°,
∴∠1=∠GED=100°.
故答案为:100.
点评:本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了折叠的性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网