题目内容

3.如图,等边△ABE与正方形ABCD有一条共公边,点E在正方形外,连结DE,则∠BED=45°.

分析 根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE与AB的关系,∠AEB的度数,根据等腰三角形的性质,可得∠AED与∠ADE的关系,根据三角形的内角和,可得∠AED的度数,根据角的和差,可得答案.

解答 解:∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∵等边三角形ABE,
∴AB=AE,∠BAE=∠AEB=60°,
∠DAE=∠BAD+∠BAE=90°+60°=150°,
AD=AE,
∴∠AEB=∠ABE=(180°-∠DAB)÷2=15°,
∴∠BED=∠AEB-∠AED=60°-15°=45°,
故答案为:45°

点评 此题考查了正方形的性质,以及等边三角形的性质,利用了等量代换的思想,熟练掌握性质是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网