题目内容
【题目】⊙O的内接正三角形的边长记为a3,⊙O的内接正方形的边长记为a4,则
等于_____.
【答案】![]()
【解析】
根据题意画出图形,设出圆的半径,再由正多边形及直角三角形的性质求解即可.
设圆的半径为r,
如图1,连接OB,OC,过点O作OD⊥BC于D,
∵△ABC内接于⊙O,
∴∠BOC=120°,OB=OC,
∴∠OBC=30°,
又∵∠BDO=90°,
∴BD=OB×cos30°=
,
故BC=2BD=
,
即a3=
;
如图2,连接OB、OC,过O作OE⊥BC于E,
∵四边形ABCD内接于⊙O,
∴∠BOC=90°,OB=OC,
∴∠OBC=45°,
又∠BEO=90°,
∴△OBE是等腰直角三角形,OE=BE,
∴OB2=OE2+BE2=2BE2,
∴BE=
,
∴BC=2BE=
,
即a4=
,
∴
,
故答案为:
.
![]()
练习册系列答案
相关题目
【题目】如图,
是线段
上--动点,以
为直径作半圆,过点
作
交半圆于点
,连接
.已知
,设
两点间的距离为
,
的面积为
.(当点
与点
或点
重合时,
的值为
)请根据学习函数的经验,对函数
随自变量
的变化而变化的规律进行探究. (注: 本题所有数值均保留一位小数)
通过画图、测量、计算,得到了
与
的几组值,如下表:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
补全表格中的数值:
;
;
.
根据表中数值,继续描出
中剩余的三个点
,画出该函数的图象并写出这个函数的一条性质;
结合函数图象,直接写出当
的面积等于
时,
的长度约为___ _
.
![]()