题目内容
在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为 .
考点:解一元一次不等式
专题:新定义
分析:首先转化成一般的不等式,然后解不等式即可.
解答:解:根据题意得:2x+12<0,
解得:x<-6.
故答案是:x<-6.
解得:x<-6.
故答案是:x<-6.
点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.
解不等式要依据不等式的基本性质:
(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;
(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;
(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.
解不等式要依据不等式的基本性质:
(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;
(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;
(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.
练习册系列答案
相关题目
如果三角形内有一点到三边距离相等,且到三顶点的距离也相等,那么这个三角形的形状是( )
| A、等腰三角形 |
| B、直角三角形 |
| C、等腰直角三角形 |
| D、等边三角形 |
| A、1 | B、0.5 | C、1.5 | D、2 |
若实数x、y满足|x-3|+(y+1)2=0,则点(x,y)在平面直角坐标系中的( )
| A、第一象限 | B、第二象限 |
| C、第三象限 | D、第四象限 |