题目内容

如图,在△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,

(1)求证:BF=EF;(2)求∠EFC的度数.

(1)证明见解析;(2)45°. 【解析】试题分析:(1)由AB=AC,AF⊥BC,可知BF=CF,再由BE⊥AC 根据直角三角形斜边中线等于斜边一半可得BF=EF,从而得到BF=EF; (2)先根据线段垂直平分线的性质及BE⊥AC得出△ABE是等腰直角三角形,再由等腰三角形的性质得出∠ABC的度数,由BF=EF,再根据三角形外角的性质即可得出结论. 试题解析:(1)∵AB=AC...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网