ÌâÄ¿ÄÚÈÝ
9£®ÒÑÖªÖ±Ïßy=kx+b£¨k¡Ù0£©¹ýµãF£¨0£¬1£©£¬ÓëÅ×ÎïÏßy=$\frac{1}{4}$x2ÏཻÓÚB¡¢CÁ½µã£®£¨1£©Èçͼ1£¬µ±µãCµÄºá×ø±êΪ1ʱ£¬ÇóÖ±ÏßBCµÄ½âÎöʽ£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬µãMÊÇÖ±ÏßBCÉÏÒ»¶¯µã£¬¹ýµãM×÷yÖáµÄƽÐÐÏߣ¬ÓëÅ×ÎïÏß½»ÓÚµãD£¬ÊÇ·ñ´æÔÚÕâÑùµÄµãM£¬Ê¹µÃÒÔM¡¢D¡¢O¡¢FΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¿Èô´æÔÚ£¬Çó³öµãMµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©Èçͼ2£¬ÉèB£¨m£®n£©£¨m£¼0£©£¬¹ýµãE£¨0£®-1£©µÄÖ±Ïßl¡ÎxÖᣬBR¡ÍlÓÚR£¬CS¡ÍlÓÚS£¬Á¬½ÓFR¡¢FS£®ÊÔÅжϡ÷RFSµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©Ê×ÏÈÇó³öCµÄ×ø±ê£¬È»ºóÓÉC¡¢FÁ½µãÓôý¶¨ÏµÊý·¨Çó½âÎöʽ¼´¿É£»
£¨2£©ÒòΪDM¡ÎOF£¬ÒªÊ¹ÒÔM¡¢D¡¢O¡¢FΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¬ÔòDM=OF£¬ÉèM£¨x£¬-$\frac{3}{4}$x+1£©£¬ÔòD£¨x£¬$\frac{1}{4}$x2£©£¬±íʾ³öDM£¬·ÖÀàÌÖÂÛÁз½³ÌÇó½â£»
£¨3£©¸ù¾Ý¹´¹É¶¨ÀíÇó³öBR=BF£¬ÔÙÓÉBR¡ÎEFµÃµ½¡ÏRFE=¡ÏBFR£¬Í¬Àí¿ÉµÃ¡ÏEFS=¡ÏCFS£¬ËùÒÔ¡ÏRFS=$\frac{1}{2}$¡ÏBFC=90¡ã£¬ËùÒÔ¡÷RFSÊÇÖ±½ÇÈý½ÇÐΣ®
½â´ð ½â£º£¨1£©ÒòΪµãCÔÚÅ×ÎïÏßÉÏ£¬ËùÒÔC£¨1£¬$\frac{1}{4}$£©£¬
ÓÖ¡ßÖ±ÏßBC¹ýC¡¢FÁ½µã£¬
¹ÊµÃ·½³Ì×飺$\left\{\begin{array}{l}{b=1}\\{k+b=\frac{1}{4}}\end{array}\right.$
½âÖ®£¬µÃ$\left\{\begin{array}{l}{k=-\frac{3}{4}}\\{b=1}\end{array}\right.$£¬![]()
ËùÒÔÖ±ÏßBCµÄ½âÎöʽΪ£ºy=-$\frac{3}{4}$x+1£»
£¨2£©ÒªÊ¹ÒÔM¡¢D¡¢O¡¢FΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¬ÔòMD=OF£¬Èçͼ1Ëùʾ£¬
ÉèM£¨x£¬-$\frac{3}{4}$x+1£©£¬ÔòD£¨x£¬$\frac{1}{4}$x2£©£¬
¡ßMD¡ÎyÖᣬ
¡àMD=-$\frac{3}{4}$x+1-$\frac{1}{4}$x2£¬
ÓÉMD=OF£¬¿ÉµÃ|-$\frac{3}{4}$x+1-$\frac{1}{4}$x2|=1£¬
¢Ùµ±-$\frac{3}{4}$x+1-$\frac{1}{4}$x2=1ʱ£¬
½âµÃx1=0£¨Éᣩ»òx1=-3£¬
ËùÒÔM£¨-3£¬$\frac{13}{4}$£©£¬
¢Úµ±-$\frac{3}{4}$x+1-$\frac{1}{4}$x2£¬=-1ʱ£¬
½âµÃ£¬x=$\frac{-3¡À\sqrt{41}}{2}$£¬
ËùÒÔM£¨$\frac{-3-\sqrt{41}}{2}$£¬$\frac{17+3\sqrt{41}}{8}$£©»òM£¨$\frac{-3+\sqrt{41}}{2}$£¬$\frac{17-3\sqrt{41}}{8}$£©£¬
×ÛÉÏËùÊö£¬´æÔÚÕâÑùµÄµãM£¬Ê¹ÒÔM¡¢D¡¢O¡¢FΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¬![]()
Mµã×ø±êΪ£¨-3£¬$\frac{13}{4}$£©»ò£¨$\frac{-3-\sqrt{41}}{2}$£¬$\frac{17+3\sqrt{41}}{8}$£©»ò£¨$\frac{-3+\sqrt{41}}{2}$£¬$\frac{17-3\sqrt{41}}{8}$£©£»
£¨3£©¹ýµãF×÷FT¡ÍBRÓÚµãT£¬Èçͼ2Ëùʾ£¬
¡ßµãB£¨m£¬n£©ÔÚÅ×ÎïÏßÉÏ£¬
¡àm2=4n£¬
ÔÚRt¡÷BTFÖУ¬
BF=$\sqrt{B{T}^{2}+T{F}^{2}}$
=$\sqrt{£¨n-1£©^{2}+{m}^{2}}$
=$\sqrt{£¨n-1£©^{2}+4n}$
=$\sqrt{£¨n+1£©^{2}}$£¬
¡ßn£¾0£¬
¡àBF=n+1£¬
ÓÖ¡ßBR=n+1£¬
¡àBF=BR£®
¡à¡ÏBRF=¡ÏBFR£¬
ÓÖ¡ßBR¡Íl£¬EF¡Íl£¬
¡àBR¡ÎEF£¬
¡à¡ÏBRF=¡ÏRFE£¬
¡à¡ÏRFE=¡ÏBFR£¬
ͬÀí¿ÉµÃ¡ÏEFS=¡ÏCFS£¬
¡à¡ÏRFS=$\frac{1}{2}$¡ÏBFC=90¡ã£¬
¡à¡÷RFSÊÇÖ±½ÇÈý½ÇÐΣ®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁË´ý¶¨ÏµÊý·¨Çó½âÎöʽ£¬Æ½ÐÐËıßÐεÄÅж¨£¬Æ½ÐÐÏßµÄÐÔÖÊ£¬¹´¹É¶¨ÀíÒÔ¼°·ÖÀàÌÖÂÛºÍÊýÐνáºÏµÈÊýѧ˼Ï룮
| A£® | 1 | B£® | 2 | C£® | $\sqrt{3}$ | D£® | $2\sqrt{3}$ |
| A£® | 6.1¡Á10-5 | B£® | 6.1¡Á10-6 | C£® | 0.61¡Á10-5 | D£® | 61¡Á10-7 |
| A£® | a2+a3=a5 | B£® | £¨-a3£©2=a6 | C£® | ab2•3a2b=3a2b2 | D£® | -2a6¡Âa2=-2a3 |