ÌâÄ¿ÄÚÈÝ

4£®Èçͼ£¬ÒÑÖªRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬AC=8£¬BC=6£¬µãPÒÔÿÃë1¸öµ¥Î»µÄËÙ¶È´ÓAÏòCÔ˶¯£¬Í¬Ê±µãQÒÔÿÃë2¸öµ¥Î»µÄËÙ¶È´ÓA¡úB¡úC·½ÏòÔ˶¯£¬ËüÃǵ½Cµãºó¶¼Í£Ö¹Ô˶¯£¬ÉèµãP£¬QÔ˶¯µÄʱ¼äΪtÃ룮
£¨1£©ÔÚÔ˶¯¹ý³ÌÖУ¬ÇóP£¬QÁ½µã¼ä¾àÀëµÄ×î´óÖµ£»
£¨2£©¾­¹ýtÃëµÄÔ˶¯£¬Çó¡÷ABC±»Ö±ÏßPQɨ¹ýµÄÃæ»ýSÓëʱ¼ätµÄº¯Êý¹ØÏµÊ½£»
£¨3£©P£¬QÁ½µãÔÚÔ˶¯¹ý³ÌÖУ¬ÊÇ·ñ´æÔÚʱ¼ät£¬Ê¹µÃ¡÷PQCΪµÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³ö´ËʱµÄtÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£¨$\sqrt{5}$¡Ö2.24£¬½á¹û±£ÁôһλСÊý£©

·ÖÎö £¨1£©Èçͼ1£¬¹ýQ×÷QE¡ÍACÓÚE£¬Á¬½ÓPQ£¬ÓÉ¡÷ABC¡×¡÷AQE£¬µÃµ½±ÈÀýʽ$\frac{AQ}{AB}=\frac{AE}{AC}=\frac{QE}{BC}$£¬ÇóµÃPE=$\frac{3}{5}t$£¬QE=$\frac{6}{5}t$£¬¸ù¾Ý¹´¹É¶¨ÀíµÃµ½PQ2=QE2+PE2£¬Çó³öPQ=$\frac{3\sqrt{5}}{5}$t£¬µ±QÓëBÖØºÏʱ£¬PQµÄÖµ×î´ó£¬ÓÚÊǵõ½µ±t=5ʱ£¬PQµÄ×î´óÖµ=3$\sqrt{5}$£»
£¨2£©ÓÉÈý½ÇÐεÄÃæ»ý¹«Ê½¼´¿ÉÇóµÃ£»
£¨3£©´æÔÚ£¬Èçͼ2£¬Á¬½ÓCQ£¬PQ£¬·ÖÈýÖÖÇé¿ö¢Ùµ±CQ=CPʱ£¬¢Úµ±PQ=CQʱ£¬¢Ûµ±PQ=PCʱ£¬Áз½³ÌÇó½â¼´¿É£®

½â´ð ½â£º£¨1£©Èçͼ1£¬¹ýQ×÷QE¡ÍACÓÚE£¬Á¬½ÓPQ£¬
¡ß¡ÏC=90¡ã£¬
¡àQE¡ÎBC£¬
¡à¡÷ABC¡×¡÷AQE£¬
¡à$\frac{AQ}{AB}=\frac{AE}{AC}=\frac{QE}{BC}$£¬
¡ßAQ=2t£¬AP=t£¬
¡ß¡ÏC=90¡ã£¬AC=8£¬BC=6£¬
¡àAB=10£¬
¡à$\frac{2t}{10}=\frac{t+PE}{8}=\frac{QE}{6}$£¬
¡àPE=$\frac{3}{5}t$£¬QE=$\frac{6}{5}t$£¬
¡àPQ2=QE2+PE2£¬
¡àPQ=$\frac{3\sqrt{5}}{5}$t£¬
µ±QÓëBÖØºÏʱ£¬PQµÄÖµ×î´ó£¬
¡àµ±t=5ʱ£¬PQµÄ×î´óÖµ=3$\sqrt{5}$£»

£¨2£©Èçͼ1£¬¡÷ABC±»Ö±ÏßPQɨ¹ýµÄÃæ»ý=S¡÷AQP£¬
µ±QÔÚAB±ßÉÏʱ£¬S=$\frac{1}{2}$AP•QE=$\frac{1}{2}$t•$\frac{6}{5}t$=${\frac{3}{5}t}^{2}$£¬£¨0£¼t¡Ü5£©
µ±QÔÚBC±ßÉÏʱ£¬¡÷ABC±»Ö±ÏßPQɨ¹ýµÄÃæ»ý=SËıßÐÎABQP£¬
¡àSËıßÐÎABQP=S¡÷ABC-S¡÷PQC=$\frac{1}{2}$¡Á8¡Á6-$\frac{1}{2}$£¨8-t£©•£¨16-2t£©=-t2+16t-40£¬£¨5£¼t¡Ü8£©£»
¡à¾­¹ýtÃëµÄÔ˶¯£¬¡÷ABC±»Ö±ÏßPQɨ¹ýµÄÃæ»ýSÓëʱ¼ätµÄº¯Êý¹ØÏµÊ½ÊÇ£º
S=$\left\{\begin{array}{l}{\frac{3}{5}{t}^{2}£¨0£¼t¡Ü5£©}\\{-{t}^{2}+16t-40£¨5£¼t¡Ü8£©}\end{array}\right.$£®

£¨3£©´æÔÚ£®
µ±µãQÔÚAB±ßÉÏʱ£¬Èçͼ2£¬Á¬½ÓCQ£¬PQ£¬
ÓÉ£¨1£©ÖªQE=$\frac{6}{5}t$£¬CE=AC-AE=8-$\frac{8}{5}t$£¬PQ=$\frac{3\sqrt{5}}{5}$t£¬
¡àCQ=$\sqrt{{QE}^{2}{+CE}^{2}}$=$\sqrt{{£¨\frac{6}{5}t£©}^{2}{+£¨8-\frac{8}{5}t£©}^{2}}$=$\sqrt{{4t}^{2}-\frac{128}{5}t+64}$=2$\sqrt{{t}^{2}-\frac{32}{5}t+16}$£¬
¢Ùµ±CQ=CPʱ£¬
¼´£º2$\sqrt{{t}^{2}-\frac{32}{5}t+16}$=8-t£¬
½âµÃ£»t=$\frac{16}{5}$£¬
¢Úµ±PQ=CQʱ£¬
¼´£»$\frac{3\sqrt{5}}{5}$t=2$\sqrt{{t}^{2}-\frac{32}{5}t+16}$£¬
½âµÃ£ºt=$\frac{40}{11}$£¬t=8£¨²»ºÏÌâÒâÉáÈ¥£©£¬
¢Ûµ±PQ=PCʱ£¬
¼´$\frac{3\sqrt{5}}{5}$t=8-t£¬
½âµÃ£ºt¡Ö3.4£»
µ±µãQÔÚBC±ßÉÏʱ£¬
¡ß¡ÏACB=90¡ã£¬
¡à¡÷PQCÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬
¡àCQ=CP£¬
¡à8-t=16-2t£¬
¡àt=8£¬¡àP£¬Q£¬CÖØºÏ£¬²»ºÏÌâÒ⣬
×ÛÉÏËùÊö£ºµ±t=$\frac{16}{5}$£¬t=$\frac{40}{11}$£¬t=3.4ʱ£¬¡÷PQCΪµÈÑüÈý½ÇÐΣ®

µãÆÀ ±¾Ì⿼²éÁ˶¯µãÎÊÌ⣬ÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ£¬Èý½ÇÐεÄÃæ»ý£¬¹´¹É¶¨Àí£¬µÈÑüÈý½ÇÐεÄÐÔÖÊ£¬ÌرðÊÇ£¨3£©Òª·ÖÀàÌÖÂÛ£¬²»ÒªÂ©½â£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø