题目内容
若x,y为实数,且y=
+
+3,则
= .
| 3x-6 |
| 2-x |
|
考点:二次根式有意义的条件
专题:
分析:根据被开方数大于等于0列式求出x,再求出y的值,然后代入代数式进行计算即可得解.
解答:解:由题意得,3x-6≥0且2-x≥0,
解得x≥2且x≤2,
所以,x=2,
y=3,
所以,
=
=
.
故答案为:
.
解得x≥2且x≤2,
所以,x=2,
y=3,
所以,
|
|
| ||
| 3 |
故答案为:
| ||
| 3 |
点评:本题考查的知识点为:二次根式的被开方数是非负数.
练习册系列答案
相关题目
已知点A(3,4),B(3,1),C(4,1),则AB与AC的大小关系是( )
| A、AB>AC | B、AB=AC |
| C、AB<AC | D、无法判断 |
下列各式变形中,是因式分解的是( )
| A、a2-2ab+b2-1=(a-b)2-1 |
| B、4a(a+2b)=4a2+8ab |
| C、(x+2)(x-2)=x2-4 |
| D、x4-1=(x2+1)(x+1)(x-1) |
一个多项式加上5x2-4x-3得x2-3x,则这个多项式为( )
| A、4x2-7x-3 |
| B、6x2-x-3 |
| C、-4x2+x+3 |
| D、-6x2-7x-3 |
把多项式2xn+2+4xn-6xn-2分解因式,其结果应是( )
| A、2xn(x2+2-3x)=2xn(x-1)(x-2) |
| B、2xn-2(x2-3x+2)=2xn-2(x-1)(x-2) |
| C、2xn-2(x4+2x2-3)=2xn-2(x2+3)(x2-1)=2xn-2(x2+3)(x+1)(x-1) |
| D、2xn-2(x4-2x2+3)=2xn-2 (x2+3)(x2+1) |