题目内容

1.如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C作DA的平行线与AF相交于点F,CD=2$\sqrt{3}$,BE=1.
求证:
(1)四边形FADC是菱形;
(2)FC是⊙O的切线.

分析 (1)首先连接OC,由垂径定理,可求得CE的长,又由勾股定理,可求得半径OC的长,然后由勾股定理求得AD的长,即可得AD=CD,易证得四边形FADC是平行四边形,继而证得四边形FADC是菱形;
(2)首先连接OF,易证得△AFO≌△CFO,继而可证得FC是⊙O的切线.

解答 证明:(1)连接OC,
∵AB是⊙O的直径,CD⊥AB,
∴CE=DE=$\frac{1}{2}$CD=$\frac{1}{2}$×2$\sqrt{3}$=$\sqrt{3}$,
设OC=x,
∵BE=2,
∴OE=x-2,
在Rt△OCE中,OC2=OE2+CE2
∴x2=(x-1)2+($\sqrt{3}$)2
解得:x=2,
∴OA=OC=2,OE=2,
∴AE=3,
在Rt△AED中,AD=$\sqrt{A{E}^{2}+D{E}^{2}}$=2$\sqrt{3}$,
∴AD=CD,
∵AF是⊙O切线,
∴AF⊥AB,
∵CD⊥AB,
∴AF∥CD,
∵CF∥AD,
∴四边形FADC是平行四边形,
∵AD=CD,
∴平行四边形FADC是菱形;
(2)连接OF,AC,
∵四边形FADC是菱形,
∴FA=FC,
∴∠FAC=∠FCA,
∵AO=CO,
∴∠OAC=∠OCA,
∴∠FAC+∠OAC=∠FCA+∠OCA,
即∠OCF=∠OAF=90°,
即OC⊥FC,
∵点C在⊙O上,
∴FC是⊙O的切线.

点评 此题考查了切线的判定与性质、菱形的判定与性质、垂径定理、勾股定理以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网