题目内容

如图,△ABC中,AB>AC,∠ABC的平分线和外角∠ACF的平分线交于点P,PD∥BC,D在AB上,PD交AC于E,求证:DE=BD-CE.
考点:等腰三角形的判定与性质,平行线的性质
专题:证明题
分析:证明BD=FD,CE=FE,即可解决问题.
解答:证明:∵∠ABC的平分线和外角∠ACF的平分线交于点P,
∴∠DBP=∠CBP,∠ECP=∠FCP;
∵PD∥BC,
∴∠DPB=∠CBP,∠EPC=∠FCP,
∴∠DBP=∠DPB,∠ECP=∠EPC,
∴BD=PD,EC=EP;
∴DE=BD-CE.
点评:该题主要考查了等腰三角形的判定、平行线的性质等几何知识点的应用问题;牢固掌握等腰三角形的判定、平行线的性质等几何知识点是灵活运用、解题的基础和关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网