题目内容

某工厂设计了一款产品,成本为每件20元.投放市场进行试销,经调查发现,该种产品每天的销售量y(件)与销售单价x(元)之间满足y=-2x+80 (20≤x≤40),设销售这种产品每天的利润为W(元).
(1)求销售这种产品每天的利润W(元)与销售单价x(元)之间的函数表达式;
(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少元?
考点:二次函数的应用
专题:
分析:(1)根据“总利润=单件的利润×销售量”列出二次函数关系式即可;
(2)将得到的二次函数配方后即可确定最大利润.
解答:解:(1)w=y(x-20)=(x-20)(-2x+80)=-2x2+120x-1600
(2)w=2x2+120x-1600=-2(x-30)2+200,
则当销售单价定为30元时,工厂每天获得的利润最大,最大利润是200元.
点评:此题主要考查了二次函数的性质在实际生活中的应用,最大销售利润的问题常利函数的增减性来解答,要注意应该在自变量的取值范围内求最大值(或最小值).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网