题目内容

5.如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.
(1)求证:BD=BE.
(2)若∠DBC=30°,AB=4,求△BED的周长.

分析 (1)根据矩形的对角线相等可得AC=BD,然后证明四边形ABEC是平行四边形,再根据平行四边形的对边相等可得AC=BE,从而得证;
(2)根据矩形的对角线互相平分求出BD的长度,再根据30°角所对的直角边等于斜边的一半求出CD的长度,然后求出DE,即可得出结果.

解答 (1)证明:∵四边形ABCD是矩形,
∴AC=BD,AB∥CD,
又∵BE∥AC,
∴四边形ABEC是平行四边形,
∴AC=BE,
∴BD=BE;
(2)解:∵在矩形ABCD中,BO=4,∴BD=2BO=2×4=8,
∵∠DBC=30°,BD=BE,
∴CD=$\frac{1}{2}$BD=$\frac{1}{2}$×8=4,
∴AB=CD=4,DE=CD+CE=CD+AB=4+4=8,
∴△BED的周长=BD+BE+DE=8+8+8=24..

点评 本题考查了矩形的对角线互相平分且相等的性质,平行四边形的判定与性质,30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网