题目内容
9.下列三组正多边形的组合:①正八边形和正方形;②正五边形和正八边形;③正六边形和正方形,能够铺满地面的组合是①(填序号即可)分析 能够铺满地面的图形,即是能够凑成360°的图形组合.
解答 解:①正方形的每个内角为90°,正八边形的每个内角为135°,两个正八边形和一个正方形刚好能铺满地面;
②正五边形每个内角是180°-360°÷5=108°,正八边形每个内角为135度,135m+108n=360°,显然n取任何正整数时,m不能得正整数,故不能铺满;
③正六边形的每个内角是120°,正方形的每个内角是90°,120m+90n=360°,显然n取任何正整数时,m不能得正整数,故不能铺满;
故答案为:①.
点评 此题主要考查了平面镶嵌,解这类题,除了掌握多边形镶嵌成平面图形的条件,还可列二元方程看是否有正整数解来判断.
练习册系列答案
相关题目
4.若关于x的不等式组$\left\{\begin{array}{l}{x-a>0}\\{1-2x>x-2}\end{array}\right.$的解集中只有4个整数解,则a取值范围是-4≤a<-3.
18.要使$\frac{1}{\sqrt{x-2}}$有意义,x必须满足( )
| A. | x≤2 | B. | x>2 | C. | x≥2 | D. | x<2 |