题目内容

如图,BO、CO分别平分∠ABC和∠ACB.
(1)若∠A=70°,求∠BOC的度数;
(2)直接写出∠BOC与∠A的关系.
考点:三角形内角和定理
专题:
分析:(1)根据三角形的内角和定理求出∠ABC+∠ACB,再根据角平分线的定义求出∠OBC+∠OCB,然后根据三角形的内角和等于180°列式计算即可得解;
(2)由(1)直接得出答案即可.
解答:解:(1)∵∠A=70°,
∴∠ABC+∠ACB=180°-∠A=180°-70°=110°,
∵BO、CO分别平分∠ABC和∠ACB,
∴∠OBC+∠OCB=
1
2
(∠ABC+∠ACB)=
1
2
×110°=55°,
在△OBC中,∠BOC=180°-(∠OBC+∠OCB)=180°-55°=125°.
(2)∠BOC=180°-(∠OBC+∠OCB)
=180°-
1
2
(∠ABC+∠ACB)
=180°-
1
2
(180°-∠A)
=90°+
1
2
∠A.
点评:本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网