题目内容

6.如图,已知B、C、E三点在同一条直线上,△ABC与△DCE都是等边三角形,其中线段BD交AC于点G,线段AE交CD于点F,求证:
(1)△ACE≌△BCD;
(2)$\frac{AG}{GC}$=$\frac{AF}{FE}$.

分析 (1)由三角形ABC与三角形CDE都为等边三角形,利用等边三角形的性质得到两对边相等,一对角相等,利用等式的性质得到夹角相等,利用SAS即可得证;
(2)由(1)得出的三角形全等得到对应角相等,再由一对角相等,且夹边相等,利用ASA得到三角形GCD与三角形FCE全等,利用全等三角形对应边相等得到CG=CF,进而确定出三角形CFG为等边三角形,确定出一对内错角相等,进而得到GF与CE平行,利用平行线等分线段成比例即可得证.

解答 证明:(1)∵△ABC与△CDE都为等边三角形,
∴AC=BC,CE=CD,∠ACB=∠DCE=60°,
∴∠ACB+∠ACD=∠DCE+∠ACD,即∠ACE=∠BCD,
在△ACE和△BCD中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACE=∠BCD}\\{CE=CD}\end{array}\right.$,
∴△ACE≌△BCD(SAS),
(2)∵△ACE≌△BCD,
∴∠BDC=∠AEC,
在△GCD和△FCE中,
$\left\{\begin{array}{l}{∠GCD=∠FCE=60°}\\{CD=CE}\\{∠BDC=∠AEC}\end{array}\right.$,
∴△GCD≌△FCE(ASA),
∴CG=CF,
∴△CFG为等边三角形,
∴∠CGF=∠ACB=60°,
∴GF∥CE,
∴$\frac{AG}{GC}$=$\frac{AF}{FE}$.

点评 此题考查了全等三角形的判定与性质,相似三角形的判定与性质,以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网