题目内容

16.如图,已知DE∥BC,AB=AC,∠1=125°,则∠C的度数是(  )
A.55°B.45°C.35°D.65°

分析 首先根据∠1=125°,求出∠ADE的度数;然后根据DE∥BC,AB=AC,可得AD=AE,∠C=∠AED,求出∠AED的度数,即可判断出∠C的度数是多少.

解答 解:∵∠1=125°,
∴∠ADE=180°-125°=55°,
∵DE∥BC,AB=AC,
∴AD=AE,∠C=∠AED,
∴∠AED=∠ADE=55°,
又∵∠C=∠AED,
∴∠C=55°.
故选:A.

点评 (1)此题主要考查了等腰三角形的性质和应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
(2)此题还考查了平行线的性质,要熟练掌握,解答此题的关键是要明确:两条平行线之间的距离处处相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网