题目内容

13.杨辉是我国南宋末年的一位杰出的数学家.在他著的《详解九章算法》一书中,画了一张表示二项式展开后的系数构成的三角图形,称做“开方做法本源”,现在简称为“杨辉三角”,它是杨辉的一大重要研究成果.
我们把杨辉三角的每一行分别相加,如下:
1               (  1  )
1   1             ( 1+1=2  )
1   2   1           (1+2+1=4  )
1   3   3   1         (1+3+3+1=8  )
1   4   6   4   1       (1+4+6+4+1=16  )
1   5  10  10   5  1      (1+5+10+10+5+1=32  )
1   6  15  20  15  6   1   (1+6+15+20+15+6+1=64  )
…写出杨辉三角第n行中n个数之和等于2n-1

分析 由题意得出每行的数字之和等于2的序数减一次幂,据此解答即可.

解答 解:∵第1行数字之和1=20
第2行数字之和2=21
第3行数字之和4=22
第4行数字之和8=23

∴第n行数字之和2n-1
故答案为:2n-1

点评 本题主要考查数字的变化类,解题的关键是每行的数相加,分析总结得出规律,根据规律求出第n行的数据之和.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网