题目内容

6.将抛物线C1:y=-x2-2x,绕着点M(1,0)旋转180°后,所得到的新抛物线C2的解析式是y=(x-3)2-1.

分析 先利用配方法得到抛物线C1的顶点坐标为(-1,1),再利用中心对称的性质得到点(-1,1)关于M(1,0)中心对称的点的坐标为(3,-1),由于抛物线C1绕着点M(1,0)旋转180°后抛物线形状不变,只是开口方向相反,且旋转后抛物线的顶点坐标为(3,-1),于是可根据顶点式写出新抛物线解析式.

解答 解:∵y=-x2-2x=-(x+1)2+1,
∴抛物线C1的顶点坐标为(-1,1),
∵点(-1,1)关于M(1,0)中心对称的点的坐标为(3,-1),
∴抛物线C1绕着点M(1,0)旋转180°后,所得到的新抛物线C2的解析式为y=(x-3)2-1.
故答案为y=(x-3)2-1.

点评 本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网