ÌâÄ¿ÄÚÈÝ
14£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=ax2+bx+3£¨a¡Ù0£©¾¹ýµãA£¨-1£¬0£©ºÍµãB£¨3£¬0£©£®£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£¬²¢Ð´³öµãDµÄ×ø±ê£»
£¨2£©Èçͼ1£¬Ö±Ïßx=2ÓëxÖá½»ÓÚµãN£¬ÓëÖ±ÏßAD½»ÓÚµãG£¬µãPÊÇÖ±Ïßx=2ÉϵÄÒ»¶¯µã£¬µ±µãPµ½Ö±ÏßADµÄ¾àÀëµÈÓÚµãPµ½xÖáµÄ¾àÀëʱ£¬ÇóµãPµÄ×ø±ê£»
£¨3£©Èçͼ2£¬Ö±Ïßy=-x+m¾¹ýµãA£¬½»yÖáÓÚµãC£¬ÔÚxÖáÉÏ·½µÄÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãM£¬Ê¹µÃS¡÷CDA=2S¡÷ACM£¿Èô´æÔÚ£¬ÇóµãMµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©ÏÈÈ·¶¨Å×ÎïÏßÓëyÖáµÄ½»µã×ø±êΪ£¨0£¬3£©£¬È»ºóÀûÓý»µãʽÇóÅ×ÎïÏß½âÎöʽ£»ÔٰѽâÎöʽÅä³É¶¥µãʽ¼´¿ÉµÃµ½Dµã×ø±ê£»
£¨2£©¹ýP×÷PH¡ÍADÓÚµãH£¬Èçͼ1£¬ÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßADµÄ½âÎöʽΪy=2x+2£¬ÔÙÈ·¶¨G£¨2£¬6£©£¬ÉèP£¨2£¬t£©£¬ÔòPN=PH=|t|£¬GP=6-t£¬Óù´¹É¶¨Àí¼ÆËã³öAG=$\sqrt{5}$£¬½Ó×ÅÖ¤Ã÷Rt¡÷GPH¡×Rt¡÷GAN£¬ÀûÓÃÏàËÆ±ÈµÃµ½tµÄ·½³Ì£¨6-t£©£º3$\sqrt{5}$=|t|£º3£¬È»ºó½â·½³ÌÇó³öt¼´¿ÉµÃµ½Pµã×ø±ê£»
£¨3£©ÏÈÈ·¶¨Ö±ÏßACµÄ½âÎöʽΪy=-x-1£¬¹ýµãD×÷DE¡ÎAC£¬½»yÖáÓÚµãE£¬Èçͼ2£¬ÀûÓÃÁ½Ö±Ï߯½ÐÐÎÊÌâ¿ÉÇó³öÖ±ÏßDEµÄ½âÎöʽΪy=-x+5£¬ÔòE£¨0£¬5£©£¬ÓÚÊÇ¿ÉÈ·¶¨ECµÄÖеãFµÄ×ø±êΪ£¨0£¬2£©£¬ÔÙ¹ýµãF×÷ACµÄƽÐÐÏß½»Å×ÎïÏßÓÚM£¬Èçͼ2£¬¸ù¾ÝƽÐÐÏßÖ®¼äµÄ¾àÀë¿ÉÅжϵãMµ½Ö±ÏßACµÄ¾àÀëµÈÓÚµãDµ½ACµÄ¾àÀëµÄÒ»°ë£¬ËùÒÔS¡÷CDA=2S¡÷ACM£¬½Ó×ÅÈ·¶¨Ö±ÏßFMµÄ½âÎöʽΪy=-x+2£¬È»ºó½â·½³Ì×é$\left\{\begin{array}{l}{y=-x+2}\\{y=-{x}^{2}+2x+3}\end{array}\right.$¼´¿ÉµÃµ½Âú×ãÌõ¼þµÄMµãµÄ×ø±ê£®
½â´ð ½â£º£¨1£©µ±x=0ʱ£¬y=ax2+bx+3=3£¬ÔòÅ×ÎïÏßÓëyÖáµÄ½»µã×ø±êΪ£¨0£¬3£©£¬
ÉèÅ×ÎïÏß½âÎöʽΪy=a£¨x+1£©£¨x-3£©£¬
°Ñ£¨0£¬3£©´úÈëµÃa•1•£¨-3£©=3£¬½âµÃa=-1£¬
ËùÒÔÅ×ÎïÏß½âÎöʽΪy=-£¨x+1£©£¨x-3£©£¬¼´y=-x2+2x+3£»
y=-£¨x-1£©2+4£¬ÔòD£¨1£¬4£©£»
£¨2£©¹ýP×÷PH¡ÍADÓÚµãH£¬Èçͼ1£¬
ÉèÖ±ÏßADµÄ½âÎöʽΪy=kx+p£¬°ÑA£¨-1£¬0£©£¬D£¨1£¬4£©´úÈëµÃ$\left\{\begin{array}{l}{-k+b=0}\\{k+b=4}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=2}\\{b=2}\end{array}\right.$£¬![]()
ËùÒÔÖ±ÏßADµÄ½âÎöʽΪy=2x+2£¬
µ±x=2ʱ£¬y=2x+2=6£¬ÔòG£¨2£¬6£©£¬
ÉèP£¨2£¬t£©£¬ÔòPN=PH=|t|£¬GP=6-t£¬
ÔÚRt¡÷ANGÖУ¬AN=3£¬GN=6£¬
¡àAG=$\sqrt{{3}^{2}+{6}^{2}}$=3$\sqrt{5}$£¬
¡ß¡ÏPGH=¡ÏAGN£¬
¡àRt¡÷GPH¡×Rt¡÷GAN£¬
¡àGP£ºAG=PH£ºAN£¬¼´£¨6-t£©£º3$\sqrt{5}$=|t|£º3£¬
½âµÃt1=$\frac{3\sqrt{5}-3}{2}$£¬t2=$\frac{-3\sqrt{5}-3}{2}$£¬
¡àPµã×ø±êΪ£¨2£¬$\frac{3\sqrt{5}-3}{2}$£©»ò£¨2£¬$\frac{-3\sqrt{5}-3}{2}$£©£»
£¨3£©´æÔÚ£®
°ÑA£¨-1£¬0£©´úÈëy=-x+mµÃ1+m=0£¬½âµÃm=1£¬
¡ßÖ±ÏßACµÄ½âÎöʽΪy=-x-1£¬
¹ýµãD×÷DE¡ÎAC£¬½»yÖáÓÚµãE£¬Èçͼ2£¬
ÉèÖ±ÏßDEµÄ½âÎöʽΪy=-x+n£¬
°ÑD£¨1£¬4£©´úÈëµÃ-1+n=4£¬½âµÃn=5£¬
¡àÖ±ÏßDEµÄ½âÎöʽΪy=-x+5£¬![]()
µ±x=0ʱ£¬y=-x+5=5£¬ÔòE£¨0£¬5£©£¬
¡àECµÄÖеãFµÄ×ø±êΪ£¨0£¬2£©£¬
¹ýµãF×÷ACµÄƽÐÐÏß½»Å×ÎïÏßÓÚM£¬Èçͼ2£¬ÔòµãMµ½Ö±ÏßACµÄ¾àÀëµÈÓÚµãDµ½ACµÄ¾àÀëµÄÒ»°ë£¬
¡àS¡÷CDA=2S¡÷ACM£¬
ÉèÖ±ÏßFMµÄ½âÎöʽΪy=-x+q£¬
°ÑF£¨0£¬2£©´úÈëµÃq=2£¬
¡àÖ±ÏßFMµÄ½âÎöʽΪy=-x+2£¬
½â·½³Ì×é$\left\{\begin{array}{l}{y=-x+2}\\{y=-{x}^{2}+2x+3}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=\frac{3-\sqrt{13}}{2}}\\{y=\frac{1+\sqrt{13}}{2}}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=\frac{3+\sqrt{13}}{2}}\\{y=\frac{1-\sqrt{13}}{2}}\end{array}\right.$£¬
¡àÂú×ãÌõ¼þµÄMµãµÄ×ø±êΪ£¨$\frac{3-\sqrt{13}}{2}$£¬$\frac{1+\sqrt{13}}{2}$£©£®
µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýµÄÐÔÖÊ£»»áÀûÓôý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£¬»áÇóÒ»´Îº¯ÊýÓë¶þ´Îº¯ÊýµÄ½»µã×ø±ê£»Àí½â×ø±êÓëͼÐÎÐÔÖÊ£»»áÀûÓù´¹É¶¨ÀíºÍÏàËÆ±È¼ÆËãÏ߶εij¤£®
| A£® | µ÷²éÊг¡ÉÏÅ£Ä̵ÄÖÊÁ¿Çé¿ö | B£® | µ÷²éÈ«¹úÖÐСѧÉúµÄÊÓÁ¦Çé¿ö | ||
| C£® | µ÷²éÄ³Æ·ÅÆµÆÅݵÄʹÓÃÊÙÃü | D£® | µ÷²éº½Ìì·É»úÁ㲿¼þÊÇ·ñºÏ¸ñ |
| A£® | 60¡ã | B£® | 90¡ã | C£® | 135¡ã | D£® | 180¡ã |