题目内容

11.已知关于x、y的方程组$\left\{\begin{array}{l}{\frac{1}{3}a+\frac{2}{3}(b-x)=y}\\{b-x=y(a-1)}\end{array}\right.$的解是$\left\{{\begin{array}{l}{x=1}\\{y=2}\end{array}}\right.$,求a+b的值.

分析 把$\left\{{\begin{array}{l}{x=1}\\{y=2}\end{array}}\right.$代入方程组,得出关于a,b的方程组,再解答求出a,b的值后代入a+b解答即可.

解答 解:把$\left\{{\begin{array}{l}{x=1}\\{y=2}\end{array}}\right.$代入方程组$\left\{\begin{array}{l}{\frac{1}{3}a+\frac{2}{3}(b-x)=y}\\{b-x=y(a-1)}\end{array}\right.$,
得:$\left\{\begin{array}{l}{\frac{1}{3}a+\frac{2}{3}(b-1)=2}\\{b-1=2(a-1)}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=2}\\{b=3}\end{array}\right.$,
把a=2,b=3代入a+b=2+3=5.

点评 此题主要考查了二元一次方程组解的定义.在求解时注意用到代入消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网