题目内容
1.一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是( )| A. | B. | C. | D. |
分析 分三段讨论,①两车从开始到相遇,这段时间两车距迅速减小,②相遇后向相反方向行驶到特快到达甲地,这段时间两车距迅速增加,③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大,结合实际选符合的图象即可.
解答 解:①两车从开始到相遇,这段时间两车距迅速减小;
②相遇后向相反方向行驶到特快到达甲地这段时间两车距迅速增加;
③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;
结合图象可得C选项符合题意.
故选:C.
点评 本题考查了函数的图象,解答本题关键是分段讨论,要结合实际解答,明白每条直线所代表的实际含义及拐点的含义.
练习册系列答案
相关题目
11.
如图,已知A、B两点坐标分别为(8,0)、(0,6),P是△AOB外接圆上的一点,且∠AOP=45°,则点P的坐标为( )
| A. | (8,6) | B. | (7,7) | C. | (7$\sqrt{2}$,7$\sqrt{2}$) | D. | (5$\sqrt{2}$,5$\sqrt{2}$) |
12.如果10b=n,那么称b为n的劳格数,记为b=d (n),由定义可知:10b=n与b=d (n)所表示的是b、n两个量之间的同一关系.
(1)根据劳格数的定义,填空:d(10)=1,d(10-2)=-2;
劳格数有如下运算性质:
若m、n为正数,则d(mn)=d(m)+d(n),d($\frac{m}{n}$)=d(m)-d(n).
根据运算性质,填空:$\frac{d({a}^{3})}{d(a)}$=3(a为正数).
(2)下表中与数x对应的劳格数d (x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.
(1)根据劳格数的定义,填空:d(10)=1,d(10-2)=-2;
劳格数有如下运算性质:
若m、n为正数,则d(mn)=d(m)+d(n),d($\frac{m}{n}$)=d(m)-d(n).
根据运算性质,填空:$\frac{d({a}^{3})}{d(a)}$=3(a为正数).
(2)下表中与数x对应的劳格数d (x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.
| x | 1.5 | 3 | 5 | 6 | 8 | 9 | 12 | 27 |
| d(x) | 3a-b+c | 2a-b | a+c | 1+a-b-c | 3-3a-3c | 4a-2b | 3-b-2c | 6a-3b |
16.用配方法解方程x2+4x-5=0,下列配方正确的是( )
| A. | (x+2)2=1 | B. | (x+2)2=5 | C. | (x+2)2=9 | D. | (x+4)2=9 |
11.设2m=8,2n=32,则2m+3n等于( )
| A. | 12 | B. | 21 | C. | 45 | D. | 64 |