题目内容
若(a-2)a+1=1,则a=__________。
定义:如图①,点M,N把线段AB分割成AM,MN和BN三段,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.
请解决下列问题:
(1)已知点M,N是线段AB的勾股分割点,且BN>MN>AM.若AM=2,MN=3,求BN的长;
(2)如图②,若点F,M,N,G分别是AB,AD,AE,AC边上的中点,点D,E是线段BC的勾股分割点,且EC>DE>BD,求证:点M,N是线段FG的勾股分割点
如图,点P是菱形ABCD对角线BD上一点,PE⊥AB于点E,且PE=2.连接PC,若菱形的周长为24.则△BCP的面积为( )
A. 4 B. 6 C. 8 D. 12
如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G.
(1)完成下面的证明:
∵MG平分∠BMN
∴∠GMN=∠BMN
同理∠GNM=∠DNM.
∵AB∥CD ,
∴∠BMN+∠DNM=
∴∠GMN+∠GNM=
∵∠GMN+∠GNM+∠G=
∴∠G=
∴MG与NG的位置关系是
(2)把上面的题设和结论,用文字语言概括为一个命题: .
探索发现:;; …根据你发现的规律,回答下列问题
(1) , ;
(2)利用你发现的规律计算: ;
(3)灵活利用规律解方程:
【答案】(1) , ;(2) (3)100.
【解析】(1)利用分式的运算和题中的运算规律求解;
(2)利用前面的运算规律得到原式=,然后合并后通分即可;
(3)利用前面的运算规律方程化为 ,然后合并后解分式方程即可.
(1),; ;
(2)原式== =;
(3)
,
经检验是原方程的解.
点睛:本题考查了分式的运算和解分式方程:熟练掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.理解分式的计算规律:是解答本题的关键.
【题型】解答题【结束】26
如图,已知,A(0,6),B(-4.5,0),C(3,0),D为B点关于AC的对称点,反比例函数y= 的图象经过D点.
(1)点D的坐标是 ;
(2)求此反比例函数的解析式;
(3)已知在y=的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.
某公路急转弯处设立了一面圆型大镜子,从镜子中看到汽车车的部分号码如图所示,则该车牌照的部分号码为__________.
如图,一次函数分别交y轴、x轴于C、D两点,与反比例函数y=(x>0)的图象交于A(m,8),B(4,n)两点.
(1)求反比例函数的解析式;
(2)根据图象直接写出<的x的取值范围;
(3)求的面积.
【答案】(1)y= ;(2) 或;(3)15.
【解析】(1)把B(4,n)两点分别代入可求出n的值,确定B点坐标为B(4,2),后利用待定系数法求反比例函数的解析式;
(2)观察函数图象得到当或,反比例函数的图象在一次函数图象上方.
(3)求得直线与坐标轴轴的交点坐标,根据三角形面积公式即可求得.
(1)将代入得,
得反比例函数的关系式是.
(2)或 ,
(3)点的坐标是(0,10),点的坐标是(5,0),
分别过点A、B两点作轴、轴的垂线段,
.
点睛:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式以及观察图象的能力.
【题型】解答题【结束】25
小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( )
A. 第①块 B. 第②块 C. 第③块 D. 第④块
一次数学测试后,某班50名学生的成绩被分为5组,第1~4组的频数分别为12、10、15、
8,则第5组的频率是________.