题目内容
11.已知:x=$\frac{1}{\sqrt{10}+3}$,y=$\frac{1}{\sqrt{10}-3}$.求值:(1)x2y+xy2;
(2)x2-3xy+y2.
分析 (1)首先化简x,y的值,进而将原式提取公因式xy,分解因式,再将x,y的值代入求出答案;
(2)首先化简x,y的值,进而将原式变形,再将x,y的值代入求出答案.
解答 解:x=$\frac{1}{\sqrt{10}+3}$=$\frac{\sqrt{10}-3}{(\sqrt{10}+3)(\sqrt{10}-3)}$=$\sqrt{10}$-3,
y=$\frac{1}{\sqrt{10}-3}$=$\frac{\sqrt{10}+3}{(\sqrt{10}-3)(\sqrt{10}+3)}$=$\sqrt{10}$+3,
(1)x2y+xy2
=xy(x+y)
=($\sqrt{10}$-3)($\sqrt{10}$+3)($\sqrt{10}$-3+$\sqrt{10}$+3)
=2$\sqrt{10}$;
(2)x2-3xy+y2
=(x-y)2-xy
=($\sqrt{10}$-3-$\sqrt{10}$-3)2-($\sqrt{10}$-3)($\sqrt{10}$+3)
=36-1
=35.
点评 此题主要考查了二次根式的化简求值,正确化简x,y的值是解题关键.
练习册系列答案
相关题目