题目内容
11.如果$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$是$\left\{\begin{array}{l}{x+2y=m}\\{3x-y=n}\end{array}\right.$的解,那么m=5,n=1.分析 直接把$\left\{\begin{array}{l}x=1\\ y=2\end{array}\right.$代入方程组$\left\{\begin{array}{l}x+2y=m\\ 3x-y=n\end{array}\right.$即可得出结论.
解答 解:∵$\left\{\begin{array}{l}x=1\\ y=2\end{array}\right.$是方程组$\left\{\begin{array}{l}x+2y=m\\ 3x-y=n\end{array}\right.$的解,
∴$\left\{\begin{array}{l}1+4=m\\ 3-2=n\end{array}\right.$,即m=5,n=1.
故答案为:5,1.
点评 本题考查的是二元一次方程组的解,熟知二元一次方程组的解一定适合此方程组是解答此题的关键.
练习册系列答案
相关题目
1.下列各式中正确的是( )
| A. | -3(a-7)=-3a-21 | B. | 3a-(4a2+2)=3a-4a2+2 | ||
| C. | -[-(2a+3y)]=2a-3y | D. | -2x-y=-(2x+y) |