题目内容

18.如图,在矩形ABCD中,对角线AC,BD交于点O,AE⊥BD于点E,∠AOB=50°,则∠BAE的度数是25°.

分析 易证∠BAE=∠ADE,根据矩形对角线相等且互相平分的性质,可得∠OAB=∠OBA,在Rt△ABD中,已知∠OBA即可求得∠BAE的大小.

解答 解:∵四边形ABCD是矩形,AE⊥BD,
∴∠BAE+∠ABD=90°,∠ADE+∠ABD=90°,
∴∠BAE=∠ADE,
∵矩形对角线相等且互相平分,
∴OA=OD,
∴∠OAB=∠OBA=$\frac{180°-50°}{2}$=65°,
∴∠BAE=∠ADE=90°-65°=25°,
故答案为:25°.

点评 本题考查了矩形对角线相等且互相平分的性质,考查了等腰三角形底角相等的性质,本题中计算∠OAB的值是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网