题目内容

17.下列计算正确的是(  )
A.3a+2b=5abB.(a+2b)2=a2+4b2C.a2•a3=a5D.4x2y-2xy2=2xy

分析 根据完全平方公式、同底数幂的乘法、合并同类项,即可解答.

解答 解:A、3a与2b不是同类项,不能合并,故错误;
B、(a+2b)2=a2+4ab+4b2,故错误;
C、a2•a3=a5,正确;
D、4x2y-2xy2不能合并,故错误;
故选:C.

点评 本题考查了完全平方公式、同底数幂的乘法、合并同类项,解决本题的关键是熟记完全平方公式、同底数幂的乘法、合并同类项.

练习册系列答案
相关题目
7.设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.

(1)阅读填空
如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆,延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFFH与ABCD等积.
理由:连接AH,EH.
∵AE为直径∴∠AHE=90°∴∠HAE+∠HEA=90°.
∵DH⊥AE∴∠ADH=∠EDH=90°
∴∠HAD+∠AHD=90°
∴∠AHD=∠HED∴△ADH∽△HDE.
∴$\frac{AD}{DH}=\frac{DH}{DE}$,即DH2=AD×DE.
又∵DE=DC∴DH2=AD×DC.即正方形DFGH与矩形ABCD等积.
(2)类比思考
平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.
(3)解决问题
三角形的“化方”思路是:先把三角形转化为等积的矩形(填写图形各称),再转化为等积的正方形.
如图②,△ABC的顶点在正方形网格的格点上,请用尺规或借助作出与△ABC等积的正方形的一条边.
(不要求写具体作法,但要保留作图痕迹)
(4)拓展探究
n边形(n>3)的“化方”思路之一是:把n边形转化为n-1边形,…,直至转化为等积三角形,从而可以化方.
如图③,四边形ABCD的顶点在正方形网格的格点上,请用尺规或借助网格作出与四边形ABCD等积的三角形(不要求写具体作法,但要保留作图痕迹).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网