题目内容
12.(1)求证:三角形DEB是等腰三角形;
(2)判断AF与BD是否平行,并说明理由.
分析 (1)由折叠和平行线的性质易证∠EDB=∠EBD;
(2)AF∥DB;首先证明AE=EF,得出∠AFE=∠EAF,然后根据三角形内角和与等式性质可证明∠BDE=∠AFE,所以AF∥BD.
解答 解:(1)由折叠可知:∠CDB=∠EDB,
∵四边形ABCD是平行四边形,
∴DC∥AB,
∴∠CDB=∠EBD,
∴∠EDB=∠EBD,
∴△BDE是等边三角形;
(2)AF∥DB;
∵∠EDB=∠EBD,
∴DE=BE,![]()
由折叠可知:DC=DF,
∵四边形ABCD是平行四边形,
∴DC=AB,
∴DF=AB,
∴AE=EF,
∴∠EAF=∠EFA,
在△BED中,∠EDB+∠EBD+∠DEB=180°,
∴2∠EDB+∠DEB=180°,
同理,在△AEF中,2∠EFA+∠AEF=180°,
∵∠DEB=∠AEF,
∴∠EDB=∠EFA,
∴AF∥DB.
点评 本题主要考查了折叠变换、平行四边形的性质、等腰三角形的性质的综合应用,运用三角形内角和定理和等式性质得出内错角相等是解决问题的关键.
练习册系列答案
相关题目
20.
如图,Rt△ABC中,∠ACB=90°,分别以AB、BC为边作正方形ABFG与正方形BCDE,已知边AC=2,正方形BCDE的面积是1,则正方形ABFG的面积是( )
| A. | 3 | B. | 5 | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |