题目内容
13.先化简,再求值:(2a-1)2-(1-2a)(2a+1),其中a=-1.分析 先根据平方差公式和完全平方公式算乘法,合并同类项,最后代入求出即可.
解答 解:(2a-1)2-(1-2a)(2a+1)
=4a2-4a+1+4a2-1
=8a2-4a,
当a=-1时,
原式=8×(-1)2-4×(-1)=12.
点评 本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.
练习册系列答案
相关题目
3.如图是用火柴棒摆出的图形,第一个图中有3根火柴棒和1个三角形,第二个图中有9根火柴棒和4个三角形,第三个图中有18根火柴棒和9个三角形…,则第10个图形中,火柴棒根数及三角形个数分别有( )

| A. | 165根、100个 | B. | 165根、55个 | C. | 135根、85个 | D. | 145根、100个 |
8.
某班“红领巾义卖”活动中设立了一个可以自由转动的转盘.规定:顾客购物20元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:
(1)完成上述表格:a=295;b=0.745;
(2)请估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“书画作品”的概率约是0.6;(结果全部精确到0.1)
(3)如果要使获得“手工作品”的可能性大于获得“书画作品”的可能性,则表示“手工作品”区域的扇形的圆心角至少还要增加是多少度?
| 转动转盘的次数n | 100 | 200 | 300 | 400 | 500 | 1000 |
| 落在“书画作品”区域的次数m | 60 | 122 | 180 | 298 | a | 604 |
| 落在“书画作品”区域的频率$\frac{m}{n}$ | 0.6 | 0.61 | 0.6 | b | 0.59 | 0.604 |
(2)请估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“书画作品”的概率约是0.6;(结果全部精确到0.1)
(3)如果要使获得“手工作品”的可能性大于获得“书画作品”的可能性,则表示“手工作品”区域的扇形的圆心角至少还要增加是多少度?