题目内容

8.解方程组:$\left\{\begin{array}{l}{{x}^{2}-6xy+9{y}^{2}=9}\\{{x}^{2}-{y}^{2}-4x+4y=0}\end{array}\right.$.

分析 先将原方程组变形为$\left\{\begin{array}{l}{(x-3y+3)(x-3y-3)=0}\\{(x+y-4)(x-y)=0}\end{array}\right.$,再变形为$\left\{\begin{array}{l}{x-3y+3=0}\\{x+y-4=0}\end{array}\right.,\left\{\begin{array}{l}{x-3y+3=0}\\{x-y=0}\end{array}\right.$,$\left\{\begin{array}{l}{x-3y-3=0}\\{x+y-4=0}\end{array}\right.,\left\{\begin{array}{l}{x-3y-3=0}\\{x-y=0}\end{array}\right.$,最后解这四个二元一次方程组求出其解即可.

解答 解:原方程组变形为:
$\left\{\begin{array}{l}{(x-3y+3)(x-3y-3)=0}\\{(x+y-4)(x-y)=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x-3y+3=0}\\{x+y-4=0}\end{array}\right.,\left\{\begin{array}{l}{x-3y+3=0}\\{x-y=0}\end{array}\right.$,$\left\{\begin{array}{l}{x-3y-3=0}\\{x+y-4=0}\end{array}\right.,\left\{\begin{array}{l}{x-3y-3=0}\\{x-y=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{{x}_{1}=\frac{9}{4}}\\{{y}_{1}=\frac{7}{4}}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=\frac{3}{2}}\\{{y}_{2}=\frac{3}{2}}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{3}=\frac{15}{4}}\\{{y}_{3}=\frac{1}{4}}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{4}=-\frac{3}{2}}\\{{y}_{4}=-\frac{3}{2}}\end{array}\right.$.

点评 本题考查了二元一次方程组的解法的运用,解二元二次方程组的消元、降次思想的运用,因式分解的运用.解答时先将二元高次方程变形为二元一次方程组是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网