题目内容
如图,点A是⊙O直径BD延长线上的一点,C在⊙O上,AC=BC,AD=CD
(1)求证:AC是⊙O的切线;
(2)若⊙O的半径为4,求△ABC的面积.
如图,已知Rt△ABC是⊙O的内接三角形,其中直角边AC=6、BC=8,则⊙O的半径是_________.
如图,四边形OABC是边长为4的正方形,点P从点O沿边OA向点A运动,每秒运动1个单位.连结CP,过点P作PE⊥CP交AB于点D,且PE=PC,过点E作EF∥OA,交OB于点F,连结FD、BE,设点P运动的时间为.
(1)点E的坐标为 (用含的代数式表示);
(2)试判断线段EF的长度是否随点P的运动变化而改变?并说明理由;
(3)当为何值时,四边形BEDF的面积为.
已知:如图,E(-4,2),F(-1,-1),以O为位似中心,按比例尺1∶2,把△EFO缩小,则点E的对应点的坐标为 .
关于x的一元二次方程x2+3x-a=0的一个根是-1,则a为 .
如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为______m.
某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同. 设2,3月份利润的月增长率为x,那么x满足的方程为( )
A.
B.
C.
D.
如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°
(1)画出旋转之后的△AB′C′;
(2)求线段AC旋转过程中扫过的扇形的面积.
以下列各组数据为边长作三角形,其中能组成直角三角形的是( ).
A.3,5,3 B.4,6,8 C.7,24,25 D.6,12,13