题目内容
如图,已知AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.
(1)求证:EF是⊙O的切线;
(2)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.
如图,若把边长为1的正方形ABCD的四个角(阴影部分)剪掉,得一四边形A1B1C1D1.试问怎样剪,才能使剩下的图形仍为正方形,且剩下图形的面积为原来正方形面积的,请说明理由.(写出证明及计算过程)
已知关于x的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有两个不相等的实数根,则m的取值范围是( )
A.m> B.m≥ C.m>且m≠2 D.m≥且m≠2
如图,在⊙O上有顶点C和动点P,位于直径AB的两侧,过点C作CP的垂线与PB的延长线交于点Q.已知⊙O的直径为10,tan∠ABC=,则CQ最大值为( )
A.5 B. C. D.
如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为( )
A. B.﹣1 C.2﹣ D.
如图,在⊙O上有定点C和动点P,位于直径AB的两侧,过点C作CP的垂线与PB的延长线交于点Q.已知⊙O的直径为5,tan∠ABC=,则CQ的最大值为 .
如图,PA、PB是⊙O的切线,切点是A、B,已知∠P=60°,0A=3,那么∠AOB所对弧的长度为( )
A.6π B.5π C.3π D.2π
已知:如图,在矩形ABCD中,AC是对角线,AB=4cm,BC=3cm.点P从点A出发,沿AC方向匀速运动,速度为1cm/s,同时,点Q从点B出发,沿BA方向匀
逨运动,速度为1cm/s,过点P作PM⊥AD于点M,连接PQ,设运动时间为t(s)
(0<t<4).解答下列问题:
(1)当t为何值时,四边形PQAM是矩形?
(2)是否存在某一时刻t,使S四边形PQAM=S矩形ABCD?若存在,求出t的值;若不存在,请说明理由.
(3)当t为何值时,△APQ与△ABC相似?
2012年张掖市政府投资2亿元人民币建设了廉租房8万平方米,预计2014年投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.设每年市政府投资的增长率为x,根据题意,列出方程为( )
A.2(1+x)2=9.5 B.2(1+x)+2(1+x)2=9.5
C.2+2(1+x)+2(1+x)2=9.5 D.2(1+x)=9.5