题目内容

5.解下列方程组:
(1)$\left\{\begin{array}{l}{x=2y}\\{2x-3y=2}\end{array}\right.$                             
(2)$\left\{\begin{array}{l}{3x+2y=3}\\{5x-6y=-23}\end{array}\right.$
(3)解三元一次方程组:$\left\{\begin{array}{l}x-y+4z=5\\ y-z+4x=-1\\ z-x-4y=4\;\end{array}\right.$.

分析 (1)方程组利用代入消元法求出解即可;
(2)方程组利用加减消元法求出解即可;
(3)方程组利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{x=2y①}\\{2x-3y=2②}\end{array}\right.$,
把①代入②得:2×2y-3y=2,
解得:y=2,
把y=2代入①得:x=4,
则二元一次方程组的解为$\left\{\begin{array}{l}{x=4}\\{y=2}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{3x+2y=3①}\\{5x-6y=-23②}\end{array}\right.$,
①×3+②得:14x=-14,即x=-1,
把x=-1代入①得:y=3,
则方程组的解为$\left\{\begin{array}{l}{x=-1}\\{y=3}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{x-y+4z=5①}\\{y-z+4x=-1②}\\{z-x-4y=4③}\end{array}\right.$,
①+②+③得:x-y+z=2④,
①-④得:3z=3,即z=1,
把z=1分别代入②③得:$\left\{\begin{array}{l}{y+4x=0}\\{x+4y=-3}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=\frac{1}{5}}\\{y=-\frac{4}{5}}\end{array}\right.$.
则方程组的解为$\left\{\begin{array}{l}x=\frac{1}{5}\\ y=-\frac{4}{5}\\ z=1\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网