题目内容
如图,直立于地面上的电线杆,在阳光下落在水平地面和坡面上的影子分别是.测得, , ,在D处测得电线杆顶端A的仰角为,则电线杆的高度 为( )
A. B. C. D.
观察下面的点阵图和相应的等式,探究其中的规律:
(1)在④和⑤后面的横线上写出相应的等式
(2) 猜想写出与第n个点阵相对应的等式 .
如图,将矩形ABCD绕点A顺时针旋转到矩形A’B’C’D’的位置,旋转角为? (0?<?<90?).若?1=110?,则??=______度.
如图,已知是 的直径,CD与 相切于C, .
(1)求证:BC 是的平分线.
(2)若DC=8, 的半径OA=6,求CE的长.
【答案】(1)证明见解析;(2)4.8
【解析】分析:(1)由,推出,由,推出,可得.(2)在中,求出OD,由,可得,由此即可解决问题.
详【解析】(1)证明:因为,
所以,
又因为,
故可得,
即可得是的平分线.
(2)因为DE是的切线,
所以,即在中,DC=8,OC=OA=6,所以,
即可得EC=4.8
点睛:本题主要考查了切线的性质及相似三角形的应用,题目难度适中,会综合运用所考查的知识点是解题的关键.
【题型】解答题【结束】23
“食品安全”受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两份尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题.
(1)接受问卷调查的学生共有_____人,扇形统计图中“基本了解”部分所对应扇形的圆心角为_____ .
(2)请补全条形统计图.
(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数.
(4)若从对食品安全知识达到“了解”程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.
一次函数 y=kx+b 的图像如图所示,则当kx+b>0 时,x 的取值范围为___________.
【答案】x>1
【解析】分析:题目要求 kx+b>0,即一次函数的图像在x 轴上方时,观察图象即可得x的取值范围.
详【解析】
∵kx+b>0,
∴一次函数的图像在x 轴上方时,
∴x的取值范围为:x>1.
故答案为:x>1.
点睛:本题考查了一次函数与一元一次不等式的关系,主要考查学生的观察视图能力.
【题型】填空题【结束】16
菱形ABCD中, ,其周长为32,则菱形面积为____________.
下列运算结果正确的是( )
已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1.
(1)求证:△ABE≌△BCF;
(2)求出△ABE和△BCF重叠部分(即△BEG)的面积;
(3)现将△ABE绕点A逆时针方向旋转到△AB′E′(如图2),使点E落在CD边上的点E′处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.
下列图形中,不是中心对称图形是( )
A. 矩形 B. 菱形 C. 正五边形 D. 圆
如图,边长为1的正方形ABCD的对角线AC,BD相交于点O,有直角∠MPN,使直角顶点P与点O重合,直角边PM,PN分别与OA,OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM,PN分别交AB,BC于E,F两点,连接EF交OB于点G,则下列结论:(1)EF=OE;(2)S四边形OEBF∶S正方形ABCD=1∶4;(3)BE+BF=OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=;(5)OG·BD=AE2+CF2,其中正确的是__.