题目内容

16.如图,在平行四边形ABCD中,点E、F分别在AB、CD上,AE=CF,连接AF,BF,DE,CE,分别交于H、G.求证:
(1)四边形AECF是平行四边形.
(2)EF与GH互相平分.

分析 (1)由平行四边形的性质得出AB∥CD,AB=CD,由AE=CF,即可得出结论;
(2)由平行四边形的性质得出AF∥CE,再证明四边形BFDE是平行四边形,得出BF∥DE,证出四边形EGFH是平行四边形,即可得出结论.

解答 证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵AE=CF,
∴四边形AECF是平行四边形.
(2)由(1)得:四边形AECF是平行四边形,
∴AF∥CE,
∵AE=CF,AB∥CD,AB=CD,
∴BE∥DF,BE=DF,
∴四边形BFDE是平行四边形,
∴BF∥DE,
∴四边形EGFH是平行四边形,
∴EF与GH互相平分.

点评 本题考查了平行四边形的判定与性质;熟记一组对边平行且相等的四边形是平行四边形,证明四边形是平行四边形是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网