题目内容

如图,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣4与y轴交于点A,顶点为B,点A的坐标为(0,﹣2),点C在抛物线上(不与点A,B重合),过点C作y轴的垂线交抛物线于点D,连结AC,AD,CD,设点C的横坐标为m.

(1)求这条抛物线所对应的函数表达式.

(2)用含m的代数式表示线段CD的长.

(3)点E是抛物线对称轴上一点,且点E的纵坐标比点C的纵坐标小1,连结BD,DE,设△ACD的面积为S1,△BDE的面积为S2,且S1•S2≠0,求S2=S1时m的值.

(4)将抛物线y=a(x﹣2)2﹣4沿x=2平移,得到抛物线y=a(x﹣2)2+k,过点C作y轴平行线与抛物线y=a(x﹣2)2+k交于点F,若CD与y轴交于点G,且CD=6,直接写出使AC=FG的点F的坐标.

(1)y=x2﹣2x﹣2;(2)当m<2,且m≠0时,CD=4﹣2m;当m>2时,CD=2m﹣4;(3)m=2±或m=;(4)点F的坐标为(﹣1,﹣2)或(﹣1,3)或(5,﹣2)或(5,3) 【解析】试题分析:(1)把A(0,-2)代入抛物线切线a=即可; (2)抛物线的对称轴为直线x=2,且点C的横坐标为m,得出当m<2,且m≠0时,CD=4-2m,当m>2时,CD=2m-4; ...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网