题目内容

12.如图,△ACD、△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,∠BAC=30°,若△EAC绕某点逆时针旋转后能与△BAD重合,问:
(1)旋转中心是A;
(2)逆时针旋转90度;
(3)若EC=10cm,则BD的长度是10cm.

分析 (1)找出两重合三角形的公共顶点即可得出其旋转中心;
(2)根据两重合边所夹的角度即可求出旋转的度数;
(3)根据图形旋转的性质可直接进行解答.

解答 解:(1)∵△EAC逆时针旋转后能与△BAD重合,
∴A点即为两三角形的公共顶点,故旋转中心是A点;
(2)∵△EAC逆时针旋转后能与△BAD,
∴AE与AB重合,
∵∠BAE=90°,
∴旋转的度数为:90;
(3)由题意知EC和BD是对应线段,据旋转的性质可得BD=EC=10cm.
故答案为:(1)A;(2)90;(3)10.

点评 本题考查的是图形旋转的性质,即①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网