题目内容
四边形ABCD的对角线AC、BD相交于点O,且AD∥BC,AD=BC,补上下列条件中①AC=BD;②AB=AD;③AB=CD;④AC⊥BD,能使四边形ABCD为正方形的是( )
| A、①② | B、②③ |
| C、③④ | D、①②或①④ |
考点:正方形的判定
专题:
分析:因为AD∥BC,AD=BC,所以四边形ABCD为平行四边形,添加①则可根据对角线相等的平行四边形是矩形,证明四边形是矩形,故可根据一组邻边相等的矩形是正方形来添加条件.
解答:解:∵AD∥BC,AD=BC
∴四边形ABCD为平行四边形
∵AC=BD
∴平行四边形ABCD是矩形
若AB=AD
则四边形ABCD为正方形;
若AC⊥BD,则四边形ABCD是正方形.
故选:D.
∴四边形ABCD为平行四边形
∵AC=BD
∴平行四边形ABCD是矩形
若AB=AD
则四边形ABCD为正方形;
若AC⊥BD,则四边形ABCD是正方形.
故选:D.
点评:本题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:
①先说明它是矩形,再说明有一组邻边相等;
②先说明它是菱形,再说明它有一个角为直角.
①先说明它是矩形,再说明有一组邻边相等;
②先说明它是菱形,再说明它有一个角为直角.
练习册系列答案
相关题目
已知
和
都是关于x,y的方程ax-y+b=0的解,则a,b的值是( )
|
|
A、a=-
| ||
B、a=-
| ||
C、a=
| ||
D、a=-
|
若25x2-40xy+m是一个完全平方式,那么m的值是( )
| A、4y2 |
| B、±4y2 |
| C、±16y2 |
| D、16y2 |
已知x有两个平方根,且|x|=4,则x的值是( )
| A、4 | B、16 | C、2 | D、±4 |