ÌâÄ¿ÄÚÈÝ
¡¾ÌâÄ¿¡¿ÒÑÖªÅ×ÎïÏß
£¨
ΪÕýÕûÊý£¬ÇÒ
£©Óë
ÖáµÄ½»µãΪ
ºÍ
£¬
£¬µ±
ʱ£¬µÚ1ÌõÅ×ÎïÏß
Óë
ÖáµÄ½»µãΪ
ºÍ
£¬ÆäËûÒÀ´ÎÀàÍÆ£®
£¨1£©Çó
£¬
µÄÖµ¼°Å×ÎïÏß
µÄ½âÎöʽ£»
£¨2£©Å×ÎïÏß
µÄ¶¥µã
µÄ×ø±êΪ£¨ £¬ £©£»ÒÀ´ÎÀàÍÆ£¬µÚ
ÌõÅ×ÎïÏß
µÄ¶¥µã
µÄ×ø±êΪ£¨ £¬ £©£»ËùÓÐÅ×ÎïÏߵĶ¥µã×ø±êÂú×ãµÄº¯Êý¹ØÏµÊ½ÊÇ £»
£¨3£©Ì½¾¿ÏÂÁнáÂÛ£º
¢ÙÊÇ·ñ´æÔÚÅ×ÎïÏß
£¬Ê¹µÃ
ΪµÈÑüÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬ÇëÇó³öÅ×ÎïÏߵıí´ïʽ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
¢ÚÈôÖ±Ïß
ÓëÅ×ÎïÏß
·Ö±ð½»ÓÚÔòÏß¶Î
£¬
£¬¡
ÔòÏß¶Î
£¬
£¬¡
µÄ³¤ÓкιæÂÉ£¿ÇëÓú¬
µÄ´úÊýʽ±íʾ£®
¡¾´ð°¸¡¿£¨1£©
£¬
£¬
£»£¨2£©3£¬9£¬
£¬
£¬
£»£¨3£©¢Ù´æÔÚ£¬
£¬¢Ú
£®
¡¾½âÎö¡¿
(1)A1(2£¬0)£¬ÔòC1=2£¬ÔòC2=2+2=4£¬½«µãA¡¢A1µÄ×ø±ê´úÈëÅ×ÎïÏß±í´ïʽ¿ÉÇóµÃ
£¬
£¬ÓÉA1(2£¬0)£¬ÔòC1=2£¬ÔòC2=2+2=4£¬¼´¿ÉÇóµÃ´ð°¸£»
(2)ͬÀí¿ÉµÃ£ºa3=3£¬b3=9£¬ÒÀ´ËÍÆ³öµã
µÄ×ø±êΪ(n£¬n2)£¬¹ÊËùÓÐÅ×ÎïÏߵĶ¥µã×ø±êÂú×ãµÄº¯Êý¹ØÏµÊ½ÊÇ£ºy=x2£¬¼´¿ÉÇó½â£»
(3)¢Ù¡÷AAnBnΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬ÔòAAn2=2ABn2£¬¼´(2n)2=2(n2+n4)£¬¼´¿ÉÇó½â£»
¢ÚÓÉÌâÒâµÃ
£¬
£¬ÇóµÃ
£¬¼´¿ÉÇó½â£®
(1)µ±
ʱ£¬µÚ1ÌõÅ×ÎïÏß
Óë
ÖáµÄ½»µãΪ
£¬
£¬
¡à
Ôò
£¬
£®
ÓÉ
¿ÉÖª£¬
£¬
¡àÅ×ÎïÏß
Óë
ÖáµÄ½»µãΪ
£¬
£¬
£»
¹Ê´ð°¸Îª£º
£¬
£¬
£»
(2)ͬÀí¿ÉµÃ£ºÅ×ÎïÏß
Óë
ÖáµÄ½»µãΪ
£¬
£¬
£¬
¡àa3=3£¬b3=9£¬
£¬
ÒÀ´ËÍÆ³ö£ºµã
(n£¬n2)£»
¹ÊËùÓÐÅ×ÎïÏߵĶ¥µã×ø±êÂú×ãµÄº¯Êý¹ØÏµÊ½ÊÇ£ºy=x2£¬
¹Ê´ð°¸Îª£º 3£¬9£¬
£¬
£¬
£»
(3)¢Ù´æÔÚ£¬ÓÉ(1)£¬(2)µÃ
£¬
£®
µ±
ΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬ÔòAAn2=2ABn2£¬¼´
£¬
¡à
£¬
½âµÃ
£¬
(ÉáÈ¥)
¡à´æÔÚÅ×ÎïÏß
ʹµÃ
ΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬
´ËʱÅ×ÎïÏßΪ£º![]()
¢Ú¡ß
£®
µ±
ʱ£¬
£¬
£¬
¡à
£¬
¡à
£®