题目内容
15.已知方程组$\left\{\begin{array}{l}y-2x=m\\ 2y+3x=m+1\end{array}$的解x,y满足x+3y=3,求m的值.分析 利用加减法的思想由方程组可求得x+3y=2m+2,结合条件可得到关于m的方程,可求得m的值.
解答 解:
在方程组$\left\{\begin{array}{l}{y-2x=m①}\\{2y+3x=m+1②}\end{array}\right.$中,
由①+②可得x+3y=2m+1,
又x,y满足x+3y=3,
∴2m+1=3,解得m=1,
∴m的值为1.
点评 本题主要考查方程组的解法,灵活利用加减消元法的思想是解题的关键.
练习册系列答案
相关题目
6.二元一次方程组的是( )
| A. | $\left\{\begin{array}{l}{x+y=3}\\{z+x=5}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x+y=5}\\{{y}^{2}=4}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{x+y=3}\\{xy=2}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=y+11}\\{{x}^{2}-2x=y+{x}^{2}}\end{array}\right.$ |
7.方程组$\left\{\begin{array}{l}{mx+2y=3}\\{x-3y=-4n}\end{array}\right.$有无数个解,则m、n的值为( )
| A. | m=$\frac{9}{8}$,n=-$\frac{2}{3}$ | B. | m=-$\frac{2}{3}$,n=$\frac{9}{8}$ | C. | m=$\frac{2}{3}$,n=-$\frac{9}{8}$ | D. | m=1,n=-$\frac{3}{4}$ |