题目内容
3.已知a,b满足(2a+b)2+|b+1|=0,且关于x,y的方程组$\left\{\begin{array}{l}{4ax-3by=m+5}\\{2ax+by=3m}\end{array}\right.$的解满足x<0,y>0,求m的取值范围.分析 根据偶次方,绝对值得出2a+b=0,b+1=0,求出a、b的值,代入方程组得出关于x、y的方程组,求出法则的解,根据x<0,y>0得出关于m的不等式组,求出不等式组的解集即可.
解答 解:∵(2a+b)2+|b+1|=0,
∴2a+b=0,b+1=0,
解得:a=$\frac{1}{2}$,b=-1,
代入方程组$\left\{\begin{array}{l}{4ax-3by=m+5}\\{2ax+by=3m}\end{array}\right.$得:$\left\{\begin{array}{l}{2x+3y=m+5}\\{x-y=3m}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=2m+1}\\{y=-m+1}\end{array}\right.$
∵x<0,y>0,
∴$\left\{\begin{array}{l}{2m+1<0}\\{-m+1>0}\end{array}\right.$,
解不等式组得:m<-$\frac{1}{2}$.
点评 本题考查了偶次方,绝对值的非负性,二元一次方程组的解,解二元一次方程组,解不等式组的应用,解此题的关键是得出关于m的不等式组.
练习册系列答案
相关题目
15.下列方程没有实数根的是( )
| A. | $\sqrt{2}$x2+4x-$\sqrt{7}$=0 | B. | 4x2-7x+4=0 | C. | 4x2+4$\sqrt{5}$x+5=0 | D. | 3x2-5x+2=0 |