题目内容
1.| A. | 20° | B. | 25° | C. | 30° | D. | 35° |
分析 根据旋转的性质可得AC=CD,∠CDE=∠BAC,再判断出△ACD是等腰直角三角形,然后根据等腰直角三角形的性质求出∠CAD=45°,根据∠ADE=∠CED-∠CAD.
解答 解:∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,
∴AC=CD,∠CDE=∠BAC=25°,
∴△ACD是等腰直角三角形,
∴∠CAD=45°,
∴∠ADE=∠CED-∠CAD=45°-25°=20°.
故选A.
点评 本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
练习册系列答案
相关题目