题目内容
如图,已知向量、和,求作:
(1)向量.
(2)向量分别在、方向上的分向量.
如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于D点.若BD平分∠ABC,则∠A=________°.
①已知:△ABC中,BC=m,∠A=60°.问满足此条件的三角形有多少个?它们的最大面积存在吗?若存在求出最大面积,并回答此时三角形的形状;若不存在,请说明理由.
②有一个正方形的养鱼塘,四个角各有一棵大树.生产队设想把鱼塘扩大,使它成为一个面积最大的正方形,而又不把树挖掉,这一设想能否实现?若能,请你设计画出图形,并证明此时面积最大.若不能,请说明理由.
③上问题推广,有一个正五边形的养鱼塘,五个角各有一棵树,要扩大使它成为面积最大的正五边形,而又不把树挖掉,可以吗?画图说明.
已知实数x满足,那么的值是( )
A. 1或﹣2 B. ﹣1或2 C. 1 D. ﹣2
如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,CD是斜边上中线,点E在边AC上,点F在边BC上,且∠EDA=∠FDB,联结EF、DC交于点G.
(1)当∠EDF=90°时,求AE的长;
(2)CE = x,CF = y,求y关于x的函数关系式,并指出x的取值范围;
(3)如果△CFG是等腰三角形,求CF与CE的比值.
半径分别为20cm与15cm的⊙O1与⊙O2相交于A、B两点,如果公共弦AB的长为24cm,那么圆心距O1O2的长为 cm.
已知两个相似三角形的相似比为2︰5,其中较小的三角形面积是,那么另一个三角形的面积为 .
如图,在三角形纸片ABC中,∠C=90°,AC=18,将∠A沿DE折叠,使点A与点B重合,折痕和AC交于点E,EC=5,则BC的长为______.
已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.
(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于4cm2?
(2)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ中PQ的长度等于5cm?
(3)在(1)中,当P,Q出发几秒时,△PBQ有最大面积?