题目内容

如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx-3k+4与⊙O交于B、C两点,则弦BC的长的最小值为(  )
A、22
B、24
C、10
5
D、12
3
考点:圆的综合题
专题:
分析:易知直线y=kx-3k+4过定点D(3,4),运用勾股定理可求出OD,由条件可求出半径OB,由于过圆内定点D的所有弦中,与OD垂直的弦最短,因此只需运用垂径定理及勾股定理就可解决问题.
解答:解:对于直线y=kx-3k+4,当x=3时,y=4,
故直线y=kx-3k+4恒经过点(3,4),记为点D.
过点D作DH⊥x轴于点H,
则有OH=3,DH=4,OD=
OH2+DH2
=5.
∵点A(13,0),
∴OA=13,
∴OB=OA=13.
由于过圆内定点D的所有弦中,与OD垂直的弦最短,如图所示,
因此运用垂径定理及勾股定理可得:
BC的最小值为2BD=2
OB2-OD2
=2×
132-52
=2×12=24.
故选:B.
点评:本题主要考查了直线上点的坐标特征、垂径定理、勾股定理等知识,发现直线恒经过点(3,4)以及运用“过圆内定点D的所有弦中,与OD垂直的弦最短”这个经验是解决该选择题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网