题目内容
11.(1)求证:四边形EFGH是正方形;
(2)当四边形EFGH的面积为50cm2时,求tan∠FEB的值;
(3)求四边形EFGH面积的最小值.
分析 (1)由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,证出AH=BE=CF=DG,由SAS证明△AEH≌△BFE≌△CGF≌△DHG,得出EH=FE=GF=GH,∠AEH=∠BFE,证出四边形EFGH是菱形,再证出∠HEF=90°,即可得出结论;
(2)设BE=xcm,则BF=(8-x)cm,由勾股定理得出方程,解方程求出BE,得出BF,即可得出结果;
(3)设四边形EFGH面积为S,BE=xcm,则BF=(8-x)cm,由勾股定理得出S=x2+(8-x)2=2(x-4)2+32,S是x的二次函数,容易得出四边形EFGH面积的最小值.
解答 (1)证明:∵四边形ABCD是正方形,
∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,
∵AE=BF=CG=DH,
∴AH=BE=CF=DG,
在△AEH、△BFE、△CGF和△DHG中,
$\left\{\begin{array}{l}{AE=BF=CG=DH}&{\;}\\{∠A=∠B=∠C=∠D}&{\;}\\{AH=BE=CF=DG}&{\;}\end{array}\right.$,
∴△AEH≌△BFE≌△CGF≌△DHG(SAS),
∴EH=FE=GF=GH,∠AEH=∠BFE,
∴四边形EFGH是菱形,
∵∠BEF+∠BFE=90°,
∴∠BEF+∠AEH=90°,
∴∠HEF=90°,
∴四边形EFGH是正方形;
(2)解:∵四边形EFGH的面积为50cm2,
∴EF2=50cm2,
设BE=xcm,则BF=(8-x)cm,
由勾股定理得:BE2+BF2=EF2,即x2+(8-x)2=50,
解得:x=1,或x=7,
即BE=1cm,或BE=7cm,
当BE=1cm时,BF=7cm,tan∠FEB=$\frac{BE}{BF}$=$\frac{1}{7}$;
当BE=7cm时,BF=1cm,tan∠FEB=$\frac{BE}{BF}$=7;
(3)解:设四边形EFGH面积为S,设BE=xcm,则BF=(8-x)cm,
根据勾股定理得:EF2=BE2+BF2=x2+(8-x)2,
∴S=x2+(8-x)2=2(x-4)2+32,
∵2>0,
∴S有最小值,
当x=4时,S的最小值=32,
∴四边形EFGH面积的最小值为32cm2.
点评 本题是四边形综合题目,考查了正方形的性质与判定、菱形的判定、全等三角形的判定与性质、勾股定理、三角函数、二次函数的最值等知识;本题综合性强,有一定难度,特别是(2)(3)中,需要通过作辅助线证明三角形全等和运用二次函数才能得出结果.
| A. | 4 | B. | 12 | C. | 24 | D. | 28 |
| A. | $\frac{2015}{2016}$ | B. | $\frac{2017}{2016}$ | C. | $\frac{2015}{2017}$ | D. | $\frac{2016}{2017}$ |