题目内容

8.如图,矩形ABCD的对角线AC、BD相交于点O,过点B作BE∥AC,交DC的延长线于点E.
(1)求证:△BDC≌△BEC;
(2)若BE=10,CE=6,连接OE,求OE的值.

分析 (1)根据矩形的性质得出AB=CD,AB∥DC,∠BCD=∠BCE=90°,求出四边形ABEC为平行四边形,求出DC=EC,根据SAS推出全等即可;
(2)过点O作OF⊥CD于点F,根据平行四边形的性质得出AC=BE,求出OF和EF的长,最后根据勾股定理求出EF即可.

解答 (1)证明:∵四边形ABCD为矩形,
∴AB=CD,AB∥DC,∠BCD=∠BCE=90°,
∵AC∥BE,
∴四边形ABEC为平行四边形,
∴AB=CE,
∴DC=EC,
在△BCD和△BCE中,
$\left\{\begin{array}{l}{BC=BC}\\{∠BCD=∠BCE}\\{DC=EC}\end{array}\right.$
∴△BCD≌△BCE;
(2)解:过点O作OF⊥CD于点F,

∵由(1)知:四边形ABEC为平行四边形,
∴AC=BE,
∴BE=BD=10,
∵△BCD≌△BCE,
∴CD=CE=6,
∵四边形ABCD是矩形,
∴DO=OB,∠BCD=90°,
∵OF⊥CD,
∴OF∥BC,
∴CF=DF=$\frac{1}{2}$CD=3,
∴EF=6+3=9,
在Rt△BCE中,由勾股定理可得BC=8,
∵OB=OD,
∴OF为△BCD的中位线,
∴OF=$\frac{1}{2}$BC=4.
∴在Rt△OEF中,由勾股定理可得OE=$\sqrt{O{F}^{2}+E{F}^{2}}$=$\sqrt{{4}^{2}+{9}^{2}}$=$\sqrt{97}$.

点评 本题考查了勾股定理,全等三角形的性质和判定,矩形的性质,平行四边形的性质和判定的应用,能综合运用知识点进行推理是解此题的关键,题目综合性比较强,难度偏大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网