题目内容

4.如图,已知在四边形ABCD中,AB=20cm,BC=15cm,CD=7cm,AD=24cm,∠ABC=90°.猜想∠A与∠C关系并加以证明.

分析 连接AC,然后根据勾股定理求出AC的值,然后根据勾股定理的逆定理判断△ADC为Rt△,然后根据四边形的内角和定理即可得到∠A与∠C关系.

解答 证明:猜想∠A与∠C关系为:∠A+∠C=180°.
连结AC,

∵∠ABC=90°,
∴在Rt△ABC中,由勾股定理得:
AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=25cm,
∵AD2+DC2=625=252=AC2
∴△ADC是直角三角形,且∠D=90°,
∵∠DAB+∠B+∠BCD+∠D=180°,
∴∠DAB+∠BCD=180°,
即∠A+∠C=180°.

点评 此题考查了勾股定理及勾股定理的逆定理,解题的关键是:根据勾股定理的逆定理判断△ADC是直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网