题目内容

15.解下列方程组:
(1)$\left\{\begin{array}{l}x+2y=1\\ 3x-2y=11\end{array}\right.$
(2)$\left\{\begin{array}{l}3x+2y=5\\ 2x+5y=7\end{array}\right.$
(3)$\left\{\begin{array}{l}3x+2y=-1\\ 3(y+2)=3-2x\end{array}\right.$.

分析 (1)方程组利用加减消元法求出解即可;
(2)方程组利用加减消元法求出解即可;
(3)方程组整理后,利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{x+2y=1①}\\{3x-2y=11②}\end{array}\right.$,
①+②得:4x=12,
解得:x=3,
把x=3代入①得:y=-1,
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=-1}\end{array}\right.$;

(2)$\left\{\begin{array}{l}{3x+2y=5①}\\{2x+5y=7②}\end{array}\right.$,
①×2-②×3得:-11y=-11,
解得:y=1,
把y=1代入①得:x=1,
则方程组的解为$\left\{\begin{array}{l}x=1\\ y=1\end{array}\right.$;

(3)方程组整理得:$\left\{\begin{array}{l}{3x+2y=-1①}\\{2x+3y=-3②}\end{array}\right.$,
①×3-②×2得:5x=3,
解得:x=$\frac{3}{5}$,
把x=$\frac{3}{5}$代入①得:y=-$\frac{7}{5}$,
则方程组的解为$\left\{\begin{array}{l}x=\frac{3}{5}\\ y=-\frac{7}{5}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网