题目内容

6.解方程组:$\left\{\begin{array}{l}{{x}^{2}-4xy+{3y}^{2}=0①}\\{2x+y=21②}\end{array}\right.$.

分析 把①变形得出x-3y=0,x-y=0,则原方程组化为两个二元一次方程组,求出方程组的解即可.

解答 解:由①得:(x-3y)(x-y)=0,
x-3y=0,x-y=0,
则原方程组化为:$\left\{\begin{array}{l}{x-3y=0}\\{2x+y=21}\end{array}\right.$或$\left\{\begin{array}{l}{x-y=0}\\{2x+y=21}\end{array}\right.$
解得:$\left\{\begin{array}{l}{{x}_{1}=9}\\{{y}_{1}=3}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=7}\\{{y}_{2}=7}\end{array}\right.$
∴原方程组的解为:$\left\{\begin{array}{l}{{x}_{1}=9}\\{{y}_{1}=3}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=7}\\{{y}_{2}=7}\end{array}\right.$.

点评 本题考查了高次方程组,能把高次方程组转化成二元一次方程组是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网