题目内容
3.方程组$\left\{\begin{array}{l}{2x+3y+z=6}\\{x-y+2z=-1}\\{x+2y-z=5}\end{array}\right.$的解是:$\left\{\begin{array}{l}{x=2}\\{y=1}\\{z=-1}\end{array}\right.$.分析 方程组利用加减消元法求出解即可.
解答 解:$\left\{\begin{array}{l}{2x+3y+z=6①}\\{x-y+2z=-1②}\\{x+2y-z=5③}\end{array}\right.$,
①+③得:3x+5y=11④,
②+③×2得:3x+3y=9,即x+y=3⑤,
⑤×5-④得:2x=4,即x=2,
把x=2代入⑤得:y=1,
把x=2,y=1代入③得:z=-1,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=1}\\{z=-1}\end{array}\right.$,
故答案为:$\left\{\begin{array}{l}{x=2}\\{y=1}\\{z=-1}\end{array}\right.$
点评 此题考查了解三元一次方程组,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目
14.在半径为12的⊙O中,150°的圆心角所对的弧长等于( )
| A. | 24πcm | B. | 12πcm | C. | 10πcm | D. | 5πcm |
11.|3|的值是( )
| A. | -3 | B. | -$\frac{1}{3}$ | C. | $\frac{1}{3}$ | D. | 3 |