题目内容

如图,在半径为5cm的⊙O中,直径AB与弦CD相交于点P,∠CAB=50°,∠APD=80°.
(1)求∠ABD的大小;
(2)求弦BD的长.
考点:圆周角定理,垂径定理
专题:
分析:(1)先根据三角形外角的性质求出∠C的度数,由圆周角定理即可得出结论;
(2)过点O作OE⊥BD于点E,由垂径定理可知BD=2BE,再根据直角三角形的性质可求出BE的长,进而得出结论.
解答:解:(1)∵∠APD是△APC的外角,∠CAB=50°,∠APD=80°,
∴∠C=80°-50°=30°,
∴∠ABD=∠C=30°;

(2)过点O作OE⊥BD于点E,则BD=2BE,
∵∠ABD=30°,OB=5cm,
∴BE=OB•cos30°=5×
3
2
=
5
3
2
cm,
∴BD=2BE=5
3
cm.
点评:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网